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Abstract

The field of 3D reconstruction has enjoyed something of a renaissance in recent years, with the
commodification of RGB-D sensor technology and advancements in GPU capabilities fuelling a
wave of research. Despite impressive advancements in the area, a persistent challenge remains
in the reconstruction of so-called dynamic environments, where the contents of a scene change
through time. Dynamic environments present a challenge to 3D reconstruction systems due to
the entanglement of scene motion and camera motion in each observation of the scene.

This paper presents a novel system capable of reconstructing a wide range of dynamic environ-
ments through an approach termed egomotion compensated optical flow, wherein dynamic
objects are detected and segmented from a reconstruction through the simultaneous estimation
of an optical flow field and the camera’s own egomtion. The novel system is evaluated against
the state-of-the-art and is shown to perform as well as, and in some cases outperform, the
state-of-the-art system used.

The accompanying code for this paper is available on GitHub: https://github.com/
connorkeevill/dynamic-3D-reconstruction. The accompanying video is available on
YouTube: https://youtu.be/zrWnW1QZjHM

https://github.com/connorkeevill/dynamic-3D-reconstruction
https://github.com/connorkeevill/dynamic-3D-reconstruction
https://youtu.be/zrWnW1QZjHM
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Chapter 1

Introduction

Despite a dense body of research surrounding the topic, 3D scene reconstruction - the task
of reconstructing a 3D model of a space from a set of images - remains an unsolved task
within the field of Computer Vision, with modern systems struggling when scenes contain
dynamic (i.e., moving) objects Figure 1.1 demonstrates accelerated research efforts as a result
of recent advances in RGB-D sensor technology (ordinary RGB imaging combined with depth
information), stemming from the 2010 release of the Microsoft Kinect (a technology licensed
from PrimeSense [4]). Since then, various other devices have been showcased, from dedicated
sensors like the Asus Xtion Live and Microsoft Kinect v2, to integrated sensors such as those
seen in Apple’s iPhones and iPads (the result of a $345 million acquisition of PrimeSense1),
and Tesla’s self-driving cars.

Accessible consumer grade sensors facilitate and promote subject research. One of the most
notable papers in this space is KinectFusion [1, 2], published in the wake of Kinect’s release.
KinectFusion proposes a system capable of dense online 3D scene reconstruction from a
handheld Kinect. Kintinuous [5] and ElasticFusion [6, 7] build on the work of KinectFusion
to develop systems which can capture scenes of a larger scale (Kintinuous), and handle more
complex camera pose trajectories (ElasticFusion). The results from these systems (and further
works shown above in Figure 1.1) are very compelling, but share a common shortcoming: they
struggle with dynamic scenes.

Figure 1.1: Timeline of research into 3D scene reconstruction since the influential KinectFusion
paper [1, 2]. Figure from [3]

1https://www.reuters.com/article/us-primesense-apple-idUSBRE9AG03G20131117
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1.1 Problem Description

Dynamic scenes are a common occurrence in the real world, and are a significant challenge
for 3D scene reconstruction systems, which typically assume that the motion observed on the
camera plane is solely the result of the camera moving through the scene. Dynamic scenes
break this assumption, introducing the task of disambiguating the motion of the camera from
the motion of the scene.

The task of dynamic scene reconstruction can be viewed as a dimensionality reduction problem,
where the goal is to reduce the dimension of the scene from 4D (3D space + time) to a 3D
space containing just the static components of the scene.

1.2 Objectives

Teaching a computer to see is the problem at the heart of Computer Vision. The ability to
reconstruct a 3D model of a scene from a set of images is a key component of this problem,
and is essential for many applications, such as Simultaneous Localisation and Mapping (SLAM),
Augmented Reality (AR), Robotics, and Autonomous Vehicles. The requirement that the
scenes in all of these applications be static is unrealistic, and so the ability to handle dynamic
scenes is essential for the wider success of 3D scene reconstruction systems.

The system which is the subject of this dissertation aims to solve the problem of dynamic
scene reconstruction by proposing an optical flow-based approach to the disambiguation of
camera and scene motion. The primary objectives of the project are the following:

• perform a literature review of the state-of-the-art in 3D scene reconstruction;

• develop a system capable of detecting dynamic objects in a scene;

• use the developed system to perform dynamic 3D reconstruction;

• evaluate the developed system against the state-of-the-art;

• identify areas for future work.

1.3 Dissertation Structure

The remainder of this report is structured as follows:

• Chapter 2: Related Work
A review of the literature is conducted, introducing the basic concepts of static and
dynamic reconstruction, identifying key works which have contributed to the current
state-of-the-art, and highlighting the works which this project sits at the intersection of.

• Chapter 3: Methodology
The mathematics behind the proposed system are presented, and the implemented
system is explained.

• Chapter 4: Experimental Evaluation
This chapter performs a comparative evaluation of the developed system against the
state-of-the-art and identifies key strengths and limitations of the project.
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• Chapter 5: Conclusion
The final chapter concludes the dissertation by summarising the work, identifying areas
for future work, and discussing the personal journey of working on the project.



Chapter 2

Related Work

Recent years have seen researchers capitalize on the emergence of commodity RGB-D sensors
and more capable GPUs to deliver impressive advancements in the field of 3D scene recon-
struction. This chapter aims to condense around two and a half decades of research into the
key achievements which have contributed most to the current state-of-the-art, and describe
what the state-of-the-art is.

The review will begin with an overview of the static reconstruction problem, introducing the
reconstruction pipeline and some notable works in the literature. Next, dynamic reconstruction
and its challenges shall be explored. The areas where the pipeline deteriorates will be identified
and works which attempt to solve these shortcomings also introduced. Finally, having formed
a basis of the state-of-the-art, some avenues for future work will be proposed, laying the
groundwork for the rest of this project.

2.1 Static Reconstruction

This section will introduce static reconstruction: a term used here to describe a 3D recon-
struction system operating in a static environment. Much of the recent research observed in
the field of static reconstruction can be traced back to Izadi et al.’s influential 2011 paper,
KinectFusion [1, 2]. Therefore, in introducing static reconstruction, this section will also
explore the key works which contributed to KinectFusion and those which drew inspiration
from it.

2.1.1 The Problem
A sequence of RGB-D images (i.e., a video) of a scene is captured from a sequence of unknown
positions and angles. The task of a 3D reconstruction system is to infer the location of the
camera at each image captured and, using the inferred trajectory as a basis, construct a 3D

Figure 2.1: A typical 3D reconstruction pipeline as described by [3]
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Figure 2.2: An illustration of SIFT [8] key point correspondences for image detection. Source:
https://github.com/connorkeevill/emoji-detection-with-SIFT

model of the scene. Figure 2.1 shows a typical pipeline for 3D reconstruction as described
by Li et al. [3], consisting of 3 main stages: Image Processing, Camera Pose Estimation, and
Surface Reconstruction.

2.1.2 Image Processing
Image Processing consists of converting the raw RGB-D data captured by a sensor (e.g.: the
Microsoft Kinect [4]) into a data structure which is amenable to the techniques employed by
the rest of the reconstruction system. The Image Processing stage is, therefore, very sensitive
to changes further down the reconstruction pipeline and, as a consequence, seldom has a
rigid structure. Therefore, this section will aim to illustrate the range of strategies used by
static reconstruction systems, rather than provide a comprehensive account of each individual
approach.

Scale-Invariant Feature Transform

The Scale-Invariant Feature Transform (SIFT) [8] is an image key point extraction technique
proposed by David Lowe in 2004. SIFT enables the identification and description of key
points in an image. Key points are identified at various scales using a Gaussian pyramid to
approximate a Laplacian operator using a Difference of Gaussians [9]. Key points are described
with a 128-element feature vector describing the gradients of points surrounding the key point.
Given a point from some query image, a match can be found in a point database by finding
the closest feature vector in R128.

In 3D reconstruction, SIFT can be used to find correspondences between frames (see Figure 2.2),
for example: for alignment when performing loop-closures [10]. While SIFT is accurate, it is too
computationally complex for use in low-latency applications [11, 12], rendering it unfashionable
for modern online systems. Moreover, an increase in the capability of GPUs has led to recent
algorithms (most notably, KinectFusion’s [1, 2] GPU based implementation of hierarchical ICP)
which can handle dense point clouds. These are preferable to sparse features as the higher
number of points can reduce the effect of noise and improve reconstruction accuracy.

https://github.com/connorkeevill/emoji-detection-with-SIFT
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Camera Space Projection

While each frame of RGB-D video is indeed an image, the inclusion of depth yields a 3D
image, or so called point cloud. Therefore, as described by Palazzolo et al. [13], points from an
RGB-D image can be projected into a 3 dimensional camera space, where each point becomes
a point in R3 relative to the camera’s basis vectors - much like casting a ray when ray tracing.

Given a point p = [x y ]T 2 R2 and the function D(p) : R2 7! R which maps the point onto
its depth value, the point p0 = P(p) 2 R3 is the point in camera space, where P(p) : R2 7! R3

is defined as:

P(p) =

2

4
x�Cx
fx

D(p)
y�Cy

fy
D(p)

D(p)

3

5 , (2.1)

where Cx , Cy , fx , fy are the intrinsic camera parameters.

Equation 2.1 is widely used and is a central component of many 3D reconstruction systems [1,
5, 6, 14, 13]. The main limitation of such an approach is the prerequisite of knowing the
camera intrinsic parameters. Koch et al. [15] proposed a solution for calibrating (i.e. inferring
camera intrinsics) uncalibrated images, providing a potential solution to this problem. However,
for this project, the assumption that camera intrinsics are known will be made.

Bilateral Filtering

Point-based filter operations are some of the most fundamental image preprocessing tech-
niques [9]. A common application of point operations is de-noising: the smoothing of a signal
to reduce interference from erroneous sensor readings. However, an often faced problem with
smoothing operators (e.g. a box filter or the Gaussian filter) is that, in removing high frequency
noise, they remove high frequency detail from the image which denotes an edge. The Bilateral
Filter [16] attempts to solve this problem by simultaneously smoothing out undesired noise
while retaining the details which are needed for edge detection.

Bilateral filtering is used by many systems. KinectFusion [1, 2] and Or-El et al.’s RGBD-
Fusion [17] apply the bilateral filter to the raw depth map, enhancing the quality of the normal
maps produced. Meanwhile, Yang et al. [18] employ bilateral filtering on both the depth
map and the normal map, here attempting to infer an unknown candidate datapoint from its
surrounding data rather than filter a known depth value or normal.

Depth Map Hole Filling

Similar to the problem of de-noising is the problem of incomplete data. Data can be absent
for a number of reasons, depending on sensor type, but can typically be blamed on reflections
in the scene hindering the ability to detect a dot map (as with the Kinect [4]), objects being
too far away, or occlusions blocking the background due to misalignment in the depth and
RGB cameras.

Berdnikov and Vatolin [19] present a system capable of in-painting such holes in depth maps.
Their approach involves classifying the type of hole as either the result of an occlusion due
to misalignment (seen around the edges of objects) or a reflection in the scene. They then
apply one of two different strategies to in-paint the missing region. Deep learning can also
help to generate the missing data. SG-NN [20] is a static reconstruction system which aims
to be robust to noisy or incomplete data by training a generative neural network - through
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self supervised training - to predict what an incomplete mesh should look like. Both of these
systems are limited in their ability to handle dynamic environments, but may be complementary
to this project.

2.1.3 Camera Pose Estimation
The critical stage of the pipeline in Figure 2.1 (and the one most challenged by dynamic scenes)
is Camera Pose Estimation (CPE): the inference of the camera’s position and orientation
relative to both the previous frame in the sequence (i.e. the rigid transformation which describes
the camera motion between the two frames) and the global coordinate system. The aim of this
stage is to produce a trajectory (a sequence of positions and orientations) which accurately
describes the motion of the camera when capturing the video. This camera trajectory can be
described as the “backbone” [21] of a 3D reconstruction and therefore has been the subject of
considerable research (e.g. [11]).

Iterative Closest Point

A key algorithm for CPE is Iterative Closest Point (ICP) [22]. ICP is a popular algorithm to
align 3D models, but in reconstruction systems it is used to track camera pose. ICP aims
to find the rigid transformation which describes the motion between frames Fi�1 and Fi , by
starting with an initial guess for the transformation, and iteratively refining this by finding
correspondences between points to minimize an error metric [23]. ICP yields a more accurate
transformation as more points are introduced (as shown by Rusinkiewicz and Levoy [23]),
but doing so also increases the computational cost of the algorithm; it is a trade-off. Some
older systems (e.g. [10, 21, 24]) used sparse points, extracting points of interest during the
Image Processing stage of the pipeline in Figure 2.1, e.g. with SIFT [8], and performing ICP
with these features. Yet, as GPUs have grown more capable, researchers have moved towards
dense point tracking. A notable example of this is Izadi et al.’s seminal KinectFusion [1, 2],
presenting a novel GPU-based ICP algorithm, capable of treating the entire 640⇥480 resolution
of the Microsoft Kinect [4] as a point cloud with which to perform ICP.

While Izadi et al. [1, 2] postulate that the dense point cloud tracking employed by KinectFusion
allows ICP to be more robust to transient scene motion, dense ICP does not solve the problem
of dynamic reconstruction, with the researchers finding that larger or long term scene motion
leads to tracking failure.

Loop-Closures

Though ICP does a good job at tracking the local frame-to-frame transformations, ICP alone
is not yet sufficient to perform end-to-end camera tracking, as cumulative error from ICP and
noise in the data can introduce a degree of uncertainty. The second key component of reliable
CPE is the application of loop-closures. A loop-closure occurs in a 3D reconstruction system
when it encounters a region of the scene which is has already registered as part of the model it
is constructing. The introduction of such a reference point allows the loop (the accumulated
trajectory since either the last loop-closure or the start of the reconstruction) to be closed, in
an event which corrects the “current” position of the camera and propagates the correction
down the rest of the loop.

ElasticFusion [6, 7] makes significant use of loop-closures (performing frame-to-model tracking
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instead of the frame-to-frame ICP described above). Their approach attempts to perform a
loop-closure every frame, deforming the model if the loop-closure is successful.

2.1.4 Surface Reconstruction
Knowing the camera trajectory allows the point cloud each RGB-D frame represents to be
projected into a global coordinate space, and 3D geometry can start to form.

Voxel Model

Figure 2.3: Cross sectional model showing the implicit surface representation of TSDF, from [25]

KinectFusion [1, 2] uses Curless and Levoy’s approach [26] for volumetric model representation.
A 3D grid of uniformly sized voxels of the scene is formed at a fixed resolution and a Truncated
Signed-Distance Function (TSDF) is used: a value in each voxel specifying the distance to
the nearest surface, with the sign indicating the side of the surface that the voxel is on
(see Figure 2.3). Surfaces are found at zero-crossings of the TSDF, and the geometry is
refined beyond the resolution of the voxel grid by linearly interpolating the values around the
zero-crossing. This technique produces compelling results, but is memory-inefficient, leading to
moving volume variants which stream “inactive” regions of space out of the voxel grid [5], and
others which dynamically allocate memory for voxels as they are needed [27, 14, 13]. Another
weakness of such a voxel model, identified by Whelan et al. [5], is its inability to properly
model deformations (for example after loop-closure).

Surfels

Contrasting the volumetric approach described above is a surfel -based model, wherein the 3D
model becomes a set of surfels [28] (surface elements); discs in space defined by a position,
surface normal, colour, and radius.

Surfels, whilst more conceptually abstract, aim to solve the key limitations identified in the
voxel model. Essentially a point cloud, a surfel representation of a 3D space allows for extremely
fine deformations in the model on a per-surfel basis (as described by [29] and used by [6, 7]).
This means that model deformations (as a result of a loop-closure) are much easier: apply a
transformation to the misaligned surfels. The other primary benefit of surfels is their memory
efficiency. Henry et al. [30] post process a point cloud to produce a surfel model which
incorporates all information into a memory-efficient representation of the scene. Surfels are a
powerful alternative to traditional rendering primitives (i.e., polygons and quadrics), but fall
short as a surface representation due to the point cloud structure that they follow. As [13]
identifies, the lack of explicit connectivity between surfels complicates the mesh generation
required as part of a reconstruction system.
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2.2 Dynamic Scenes

This section will continue the review of the literature by discussing the problems faced when
trying to reconstruct dynamic scenes and presenting some proposed solutions from the state-of-
the-art. The difficulty with dynamic scenes stems from the fact that they change through time.
While a static reconstruction system can assume that differences between frames (ignoring
noise, white balance, AGC, etc.) are due to camera motion (egomotion), and therefore offer
new information to fuse into the model, a dynamic reconstruction system has to contend
with differences between frames caused by the environment changing. This challenges both
CPE (requiring dynamic object detection) and Surface Reconstruction (both when surfaces are
occluded by dynamic objects and when dynamic objects are mistakenly fused into the model).

2.2.1 CPE in Dynamic Scenes
Dynamic environments complicate the CPE problem with the additional task of estimating
which parts of a scene are moving and which are static. In other words: to handle dynamic
scenes, CPE must be able to determine whether the motion perceived is a result of camera
motion or scene motion. Failure to do so will result in an inability to find correspondences
and a collapse of the reconstruction pipeline. This presents a chicken-and-egg problem, where,
to understand camera pose, the system must be able to segment dynamic objects, but, to
segment the dynamic objects, the system must have some notion of camera movement. ICP
alone is not sufficient, assuming that a single rigid transformation occurs in each frame due to
camera motion.

Non-Rigid Warping of Canonical Scenes

An important feature of KinectFusion [1, 2] is the human interaction it offers. Users can
move objects and the system can keep track of them, but it is assumed that camera tracking
is performed with a static scene. Thus, an initial registration of the scene is required to
reconstruct it, before transitioning to focus on interaction. During interaction, KinectFusion
“locks” onto the background, which it uses for camera tracking, allowing independent tracking
and reconstruction of dynamic foreground objects.

Newcombe et al.’s DynamicFusion [31] takes inspiration from KinectFusion’s approach, but
tries to eliminate the need for an initial registration. The researchers present a dense SLAM
system which can reconstruct non-rigidly deforming scenes. Their approach hinges on the
idea of capturing a canonical model of a dynamic object and, for each frame, computing the
non-rigid warp which transforms the dynamic object into the canonical pose. This yields a
static scene on which KinectFusion-style reconstruction can be performed, sidestepping the
chicken-and-egg problem described above. Afterwards, dynamic motion can be extracted from
the reconstructed scene by applying the inverse warp to each transformed frame. Though the
results are very impressive1, DynamicFusion struggles with large inter-frame differences and
topology changes, both of which can lead to irrecoverable model corruption. Furthermore, the
system is aimed at subject motion capture rather than larger scale scene capture.

This same approach is used by MixedFusion [14], but Zhang and Xu’s work is aimed at larger
scale scene capture by also using the work of [27] for efficient TSDF representation. The
researchers acknowledge that their work neglects colour information which hinders CPE, and

1https://www.youtube.com/watch?v=i1eZekcc_lM

https://www.youtube.com/watch?v=i1eZekcc_lM
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the system also suffers the same limitations of DynamicFusion. Despite this, MixedFusion
remains a successful dynamic reconstruction system.

An important characteristic to note about this technique is that it does not remove dynamic
objects, but rather seeks to model them, too. Although this project will be focusing on the
removal of dynamic objects (instead reconstructing the static scene free of dynamics), these
works are not rendered irrelevant; MixedFusion [14] in particular has relevance which will be
discussed in the next section.

Joint CPE and Dynamic Segmentation

Instead of sidestepping the chicken-and-egg problem, an alternative approach is to perform
CPE and segmentation together.

A critical observation by Izadi et al. [1, 2] is that an inability to find correspondences between
points during ICP suggests scene motion. [32] leverages this observation in a system which
attempts to identify dynamic objects. Having estimated a frame’s pose using the hierarchical
ICP method proposed by [1, 2], the system undergoes a “data association” step, during which
frame points are either classified as stable and the model updated, or unstable and added to
the model as new points. Unstable points are promoted to stable if subsequent registrations
increase the confidence score beyond some threshold, or removed from the model if they
remain unstable for too long. Keller et al. [32] extend this classification method to segment
entire dynamic objects (not just the moving parts identified as unstable) from the scene. Using
points for which ICP fails to find a correspondence as a starting point, the system employs
a hierarchical region growing method to create a dynamics map, denoting the static and
dynamic parts of the frame. The system’s main limitations are its reliance on KinectFusion-style
hierarchical ICP (which has already been discussed as inadequate for sustained dynamics), and
the lack of any method to combat sensor drift (i.e., loop-closures).

In addition to applying DynamicFusion’s [31] work for motion capture, MixedFusion [14] also
proposes a Sigmoid-based ICP algorithm (S-ICP), capable of segmenting dynamic objects from
the input sequence and performing CPE on the static parts of the scene only. Where traditional
ICP aims to minimize the distance between corresponding points, S-ICP instead seeks to
minimize the number of correspondences that do not fit well (according to some threshold).
Having segmented the dynamic parts of the scene with S-ICP, MixedFusion will perform static
model updates and dynamic motion estimation (as described above) independently, before
recombining the static and dynamic parts. Minimising the number of unfitted points works
well when dynamic objects occupy only a small part of the frame, but as dynamic objects grow
larger this approach can misclassify static parts of a scene as dynamic in trying to minimise.

Scona et al.’s StaticFusion [33] clusters the RGB-D image into C clusters using K-Means,
and seeks to assign each cluster a confidence score B 2 [0, 1] for each cluster. The camera
pose is estimated by trying to minimise the geometric and photometric reprojection errors (or
residuals) for each cluter between two consecutive frames, with the residuals being weighted
by the confidence scores, so that only clusters associated with static parts of the scene have
strong influence on the pose estimation. StaticFusion has a very competitive sample rate, able
to process frames at 33Hz running on an Intel Core i7-3770 CPU @ 3.40GHz and an Nvidia
GeForce GTX 1070 GPU.
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Mask-Based CPE

Another popular approach for dealing with dynamic environments is to use a binary mask
denoting the dynamic parts of each frame which is used to decouple the static background
from any dynamic objects in the foreground. Much like the DynamicFusion [31] approach,
this sidesteps the chicken-and-egg problem by allowing static reconstruction to be performed
on the identified static parts of the RGB-D frame. A mask is conceptually simple, but its
creation can introduce a computational overhead, and inaccurate masks can lead to “ghosting”
artefacts in the final reconstruction, or tracking failure which corrupts the geometry of the
model (see Figure 2.4).

Deep learning has been used to create masks for dynamic object removal in RGB-D reconstruc-
tion [34]. Zhang et al. propose a system which uses the OpenPose deep neural network [35]
to estimate the pose of human subjects within a frame. Detected humans are removed
from the frame, which is fed into ElasticFusion [6, 7] for reconstruction. This approach is
successful (outperforming ElasticFusion by a significant margin), but it is limited to human
subjects, constraining the scenes which it can reliably reconstruct (it would, for example, fail
to reconstruct many of the tracking sequences in the Bonn dataset [13]).

ReFusion [13] creates masks using a purely geometric approach, removing the need for semantic
object recognition. The paper also presents a dynamic RGB-D dataset (the Bonn dataset),
which this project will use to evaluate its own results. Palazzolo et al. employ a volumetric
model representation (using a TSDF) and directly use this for CPE, reasoning that the TSDF
itself can be used as an error metric to minimize and find the transformation at each frame
which produces a trajectory. ReFusion calculates an initial pose estimate with this technique,
and uses geometric residuals to seed a mask. The mask undergoes a refinement process, before
a second pass of CPE is performed using the refined mask to remove dynamic objects. Once
the camera pose has been re-estimated, the scan is integrated into the voxel model, with the
mask applied. Such a technique increases the runtime of the reconstruction considerably due
to the second pass required. While this approach is quite successful, Figure 2.4 shows two
failure cases.

ReFusion also published its source code on GitHub2, which this project uses as both a baseline
and a foundation for its own work.

Zhang et al.’s FlowFusion [36] is also object agnostic, using optical flow to identify dynamic
objects based on the work of [37]. [37] proposes a method to learn a network which can
estimate camera motion and scene flow [38] using 2D optical flow and an inferred rigidity
mask. FlowFusion [36] segments an RGB-D frame into N clusters and uses an approach
inspired by [37] to detect dynamic clusters, proposing an iterative pipeline which uses projected
scene flow to converge towards a stable dynamic mask. The system, like ReFusion [13], can
extract many types of dynamic objects (unlike PoseFusion [34]), but struggles in situations
that challenge optical flow: very fast motion, or slight motion.

This project this dissertation presents is heavily motivated by the work of Zhang et al. in [36],
the mathematical foundation described in [37], and to a lesser extent, the work of Palazzolo
et al. in ReFusion [13].

2https://github.com/PRBonn/refusion

https://github.com/PRBonn/refusion
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Figure 2.4: Two sequences from the Bonn dataset, reconstructed with ReFusion [13]. On the left:
ghosting observed. On the right: model corruption as a result of tracking failure.

2.2.2 Dealing With Occlusions
Perfect camera tracking and dynamic object detection would allow the removal of dynamic
objects from inputted sequences. While this solves many of the problems which arise from
dynamic scenes, a concern with this approach is what to do with the void left by the removed
objects. To avoid holes in the resultant mesh, researchers have developed systems capable of
filling in holes in the RGB-D frames.

In-painting

Section 2.1.2 has already introduced the idea of depth map hole filling. Both systems outlined
there [19, 20], despite targeting static scenes, offer potential for the completion of occluded
surfaces. Another approach (this time aimed at dynamic scenes) is Trombley et al.’s Dynamic-
GAN [39]. The paper presents a deep-learning framework for converting dynamic RGB-D
frames to static ones, employing a generative adversarial network to detect dynamics and
in-paint the voids. The results show that the system is able to outperform other state-of-the-art
systems in many of the Bonn dynamic dataset’s scenes [13], and therefore suggest a compelling
direction for future work.

Although these systems deliver impressive results, the generative nature of the approach
introduces a significant computational overhead, with the researchers of Dynamic-GAN [39]
acknowledging that future work will need to focus on improving both the speed and memory
efficiency of the system. Moreover, it is not clear that this generative step is needed, as other
frames in the input sequence can fuse the missing data into the model, if a reliable camera
pose can be estimated. This dissertation will attempt to show that such a generative step is
unnecessary through the formulation of an optical-flow-based masking approach to dynamic
scene reconstruction based on the work of [36], [37], and [13]



Chapter 3

Methodology

As mentioned in Section 2.2, this project is founded upon the system developed for ReFusion [13].
The source code for ReFusion1 has been heavily modified for this research, altering Palazzolo
et al.’s core reconstruction pipeline (specifically, the Tracker() class has been overridden)
to yield a system encompassing three distinct reconstruction strategies: static, “traditional”
ReFusion, and the novel optical flow based approach which is the subject of this dissertation. By
building on an existing system, this project capitalizes on the already established reconstruction
pipeline described in the paper [13], which includes the GPU-based implementation of CPE
and the use of dynamic voxel allocation based on [27], allowing attention to be focused
on the novel aspects of the project. Furthermore, this approach facilitates a comparative
evaluation against the state-of-the-art, both because ReFusion is a subset of the implemented
system, and because the system is compatible with the data format used by the TUM RGB-D
benchmark [40] (a widely used benchmark seen in [11, 33, 34, 39]) and the Bonn dataset [13],
introduced by Palazzolo et al.

The overarching concept of the proposed project involves estimating scene motion by analyzing
the optical flow field between two frames, Fi�1 and Fi , and compensating for perceived motion
induced by camera movement by using the estimated egomotion. The resultant vector field
(referred to as projected scene flow by [37]) describes the motion of moving objects in the scene
from the perspective of Fi . Selecting a threshold on the magnitude of each pixel’s scene flow
vector yields a binary mask, which undergoes morphological opening and a depth-constrained
flood fill for refinement. The refined mask is then used to re-estimate the camera pose
(sans-dynamic objects) and integrate the scan into the model. Figure 3.1 illustrates the key
steps in this pipeline.

It is important to acknowledge the influence of Zhang et al.’s FlowFusion [36] on this work,
which similarly builds on the mathematical foundation of [37]. The core pipeline depicted in
Figure 3.1 shares some similarities with FlowFusion [36], with the main novelty of this project
being the removal of the iterative refinement observed in [36]. The system presented in this
project only requires a single pass through this pipeline.

The rest of this chapter will explore the mathematical background underpinning this pipeline
(Section 3.1), followed by the implementation details of the system (Section 3.2).

1https://github.com/PRBonn/refusion
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Figure 3.1: The core pipeline employed by this project for each frame. The RGB parts of Fi�1 and
Fi are used to create an optical flow field (red arrows). Meanwhile, the transformation between the
two frames, T , is estimated using the depth image of Fi . T is subsequently utilized to warp the
depth image of Fi�1, yielding a flow field representing the camera induced motion of each pixel (green
arrows). Subtracting the two flow fields yields another vector field representing the motion of the
scene (the projected scene flow), which is used to seed a mask. Finally, pose is re-estimated using the
mask and the scan is integrated into the volume.

3.1 Mathematical Background

The central problem solved by this dissertation is concerned with the inference of a mask
denoting the static / dynamic part of each frame in a video sequence. As described in
Section 2.2, the main challenge which arises from this is that of disambiguating perceived
motion as a result of camera movement from perceived motion as a result of scene movement.
Unlike methods relying on per-point confidence scores [32, 33], deep learning [34, 39] or
non-rigid warping [14, 31], the project proposed in this paper uses optical flow to detect
dynamics.

3.1.1 Deriving the Projected Scene Flow
Let Ft be an RGB-D frame, Pt be the camera pose, Wt be the set of all points 2 R3 observed
in Ft and wt 2 R3 be the coordinates of a unique point in world space at time t. From
Pt , the projective function Pt(wt) = ut : R3 7! R2 projects a point in world space onto the
camera plane Ft , and P�1

t (ut) = ct : R2 7! R3 projects the 2D point ut 2 Ft into the camera
coordinate space, as defined by Equation 2.1.

As described by [37], �wt�1!t denotes the 3D motion vector of w from time t � 1 to t - this
is also referred to as scene flow [38]. Critical to creating the dynamic segmentation mask is
the projected scene flow field, ⇥t , the set containing �wt�1!t projected onto the image plane
Ft for all wt 2 Wt . ⇥t is defined as:

⇥t = ⌦t  �t (3.1)

where ⌦t is the optical flow field, �t is the egomotion flow field, and  represents element-wise
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subtraction performed between the two sets.

Optical Flow Field

Optical flow is a technique used in computer vision to estimate the motion of a pixel between
two consecutive frames. It is applied in this project for the detection of dynamics in a scene.

Given a frame Fi observed at time i > 0, the 2D optical flow of �ui�1!i , where ui = Pi(wi)
can be expressed as:

!(wi) =


�x
�y

�
= Pi(wi)� Pi�1(wi�1) (3.2)

and the optical flow field ⌦i is defined as:

⌦i = {!(wi) 8wi 2 Wi} (3.3)

In the absence of camera motion, Pi is equivalent to Pi�1 and Equation 3.2 yields the projected
scene flow necessary for the dynamic segmentation mask, making Equation 3.3 equivalent
to ⇥i , in a special case of Equation 3.1 where all members of �i are [0 0]T . However, the
proposed system is aimed at dynamic scenes captured with a moving camera, tightly coupling
the camera and scene motion observed in each frame. Camera pose estimation is used to
decouple these motions by creating the egomotion flow field, �i .

Egomotion Flow Field

The egomotion flow for a single point ui = Pi(wi) is defined as:

�(ui) =


�x 0

�y 0

�
= Pi(T�1

i P�1
i�1(ui�1))� ui�1 (3.4)

The above equation explains the warping process (presented in [36]) of projecting a 2D point
ui�1 2 Fi�1 into the camera coordinate space, transforming it so that it is viewed from the
perspective of Pi , reprojecting it onto the camera plane Fi and finally subtracting the image
coordinates of the original point ui�1. The resultant 2D vector encapsulates the camera
induced perceived motion of the point wi�1!i .

Section 2.2 described ReFusion’s [13] use of the TSDF as an error metric for CPE. The
pipeline employed by Palazzolo et al. (which is used by this project) estimates the camera pose
Pi from the depth component of the Fi , but not the incremental transformation matrix Ti .
That is derived from the camera pose matrices Pi�1 and Pi :

Ti = P�1
i�1Pi (3.5)

In order to simulate the camera motion, Ti is inverted in Equation 3.4 to transform the point
ci = P�1

i�1(ui�1) relative to a fixed virtual camera.

Finally, the egomotion flow field �i is found by applying Equation 3.4 to all pixels in frame Fi .
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Figure 3.2: Illustration of the inverse relationship between an object’s perceived size and its distance
from the camera. The implication of this is that moving objects further away from the camera will
have less perceived motion on the image plane, so the motion of objects should be compensated for
by a factor of their distance from the camera, thus it is a conscious decision that this project does not
do so.

�i = {�(ui) 8ui 2 Fi} (3.6)

In a static environment, ui = Pi(wi) and ui�1 = Pi�1(wi�1) have the property that wi ⌘ wi�1,
such that the only difference between ui and ui�1 results from the extrinsic matrices of Pi and
Pi�1, i.e., any camera motion. Thus, Equation 3.4 has a symmetry with Equation 3.2 where a
static camera yields ⇥i = ⌦i and a static environment yields ⌦i ⌘ �i =) ⇥ = {[0 0]T}. In
other words, static points in the scene result in an egomotion flow �i that is equivalent to the
optical flow field ⌦i and the resultant projected scene flow ⇥i will be close to 0. Conversely,
for dynamic points in the scene, �i will not accurately represent the scene motion �wi�1!i

resulting in a non-zero difference between �i and ⌦i .

3.1.2 Mask Thresholding
Successfully finding the ⇥i for a frame Fi facilitates the creation of the dynamic segmentation
mask. The mask is denoted by Mi and element access is defined by Mi(ui) for some pixel
coordinate ui . If ⇥i perfectly described the projected scene flow, the dynamic parts of the
mask would simply be those where ⇥i has a non-zero vector: Mi(ui) = |⇥i(ui)| > 0. However,
as the constituent vector fields (⌦i and �i) are estimated, the resultant ⇥i is corrupted by
noise, so it is not the case that non-zero vectors in ⇥i imply dynamic parts of the scene. This
problem is solved by thresholding a function of the magnitude of ⇥i and the pixel’s depth:

Mi(ui) =
|⇥i(ui)|
d(ui)

> ⌧ (3.7)

where d(ui) is the depth of pixel ui in frame Fi and ⌧ is a threshold value. Empirical testing
carried out during the development of this project found that ⌧ = 3.5 yielded compelling
results on the Bonn [13] and TUM [40] data sets.

It should be noted that, despite the observation depicted in Figure 3.2, Equation 3.7 does not
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Figure 3.3: Illustration of the stages of mask generation. From left to right: post-thresholding,
post-opening and post-flood-fill (final mask).

compensate for pixel depth, as would have been the case if d(ui) were used as a multiplier.
Instead, the depth of the pixels is inversely weighted, leading to a preference for foreground
objects to be deemed dynamic. This approach is necessitated by the presence of noise in ⇥i ,
which results in non-zero projected scene flow vectors being assigned to static background
pixels. It is a strategy that favours false negatives over false positives, which is desirable in
this context as the mask refined further in the next section.

3.1.3 Mask Refinement
Thresholding ⇥i yields a binary mask where only the most dynamic parts of the scene are
labelled as dynamic. Figure 3.3 shows the mask at various stages of refinement. Some noise
is still present in the mask, so it is removed by applying a morphological opening operation
Mi = (Mi  S) � S , with the structuring element S . The resultant mask represents the
structure of the desired mask but is not necessarily contiguous. This is solved by applying a
flood-fill algorithm (expounded in Algorithm 1) to the mask, using the already known dynamic
pixels as seeds. The system employs a standard flood-fill algorithm, extended by two novel
constraints: the algorithm performs a breadth-first search that grows the dynamic region of the
mask by one pixel at a time where the depth of the pixel is within a threshold D of the seed
pixel’s depth, until the growth count c exceeds a threshold C . The depth threshold segments
objects that are at different depths, and the growth count threshold prevents spurious filling
due to a false positive seed pixel. The implemented system uses D = 0.2 (20cm) and C = 75.

3.2 Implementation

The novel system developed for this dissertation is published on GitHub: https://github.
com/connorkeevill/dynamic-3D-reconstruction

The software presented by this dissertation is written in C++ [41] and CUDA [42], and is
built on top of the publicly available source code for ReFusion2 [13]. Such language choices
are inherited from the ReFusion project, but are well-founded and similar choices would have
been taken in the absence of a pre-existing codebase. C++ is very performant, facilitates
low-level memory management, and enables direct use of OpenCV [43]; CUDA facilitates GPU
acceleration, which is essential for real-time performance.

This section moves from the purely mathematical space of the previous section to explain how
the underlying maths are efficiently implemented in code.

2https://github.com/PRBonn/refusion

https://github.com/connorkeevill/dynamic-3D-reconstruction
https://github.com/connorkeevill/dynamic-3D-reconstruction
https://github.com/PRBonn/refusion
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Algorithm 1 Flood-fill algorithm
Require: Mi is a binary mask

Queue Q = { (ui , 0) 8ui 2 Mi ^ Mi(ui) = 1 } . Each element is a tple of coordinates,
. and a growth count

while Q 6= ; do
(ui , c) Q.dequeue()
if c > C then continue
end if
for neighbour ni around ui do

if |d(ni)� d(ui)| < D and Mi(ni) = 0 then
Mi(ni) 1
Q.enqueue((ni , c + 1))

end if
end for

end while

3.2.1 High-level Code Structure
The approach for developing this project was to first simplify the ReFusion codebase to yield
a system which can handle exclusively static scenes, and then to build on this to implement
the novel system. As a result, ReFusion’s [13] influence on the code structure is evident
throughout the project, so in understanding how this system works, it is useful to understand
the architecture of ReFusion. Palazzolo et al.’s system is built around a core loop of receiving a
frame from its source, simultaneously estimating camera pose while generating the mask, and
integrating the frame into the model. It uses three main classes to achieve this: FrParser(),
Tracker() and TsdfVolume(). In each iteration of the core loop, the next frame in the
sequence is read from FrParser() and passed into the Tracker::AddScan() method, which
performs CPE and integrates the scan into the Tracker()’s internal TsdfVolume(). Once all
frames from FrParser() have been exhausted, a mesh is extracted from the TsdfVolume()
using the Tracker::ExtractMesh() method. Figure 3.4 depicts this process.

The work of this project is mostly concerned with the Tracker() class. The Tracker()
class has been turned into an abstract base class, making way for three derived classes:
StaticTracker() (removing the code pertaining to mask generation), ReTracker() (per-
forming ReFusion [13] reconstruction as already described) and OpticalFlowTracker()
(implementing mask creation as described in Section 3.1). Each class is characterised by the
behaviour overridden in the Tracker::AddScan() method.

Other, more superficial, changes have been made to the codebase:

• the addition of a Logger() class to facilitate system-wide logging profiles;

• a new Timer() class for profiling the performance of the program between checkpoints;

Start Read Frame
FrParser::ReadNext()Initialise Program Process Frame

Tracker::AddScan()
Another 
Frame?

Yes

Output Mesh
Tracker::ExtractMesh() EndNo

Figure 3.4: Flow of execution through the architecture of ReFusion [13].
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• a new settings mechanism in which runtime configuration is read from a .toml file;

• a TUMVideo() class replacing the FrParser() in an implementation which loads all
frames into memory instead of streaming them from the disk, so that performance is
more representative of a system where frames are captured in real time from a sensor.

3.2.2 Calculating the Mask
The pipeline shown in Figure 3.1 depicts the multistage process involved in generating the
mask Mi . Ideally, the pipeline would be implemented in a monolithic CUDA kernel keeping
data on the GPU to reduce memory transfers between the host and GPU. However, due to
incompatibility between some function interfaces, the envisioned monolith is fractured into
four main stages within the OpticalFlowTracker::calculateMask() method, with data
being transferred between the host and GPU between each stage:

1. optical flow - GPU;

2. camera pose estimation - GPU;

3. mask thresholding - GPU;

4. mask refinement - CPU.

The following sections will describe the implementation of each of these stages in detail.

Optical Flow

There are many approaches for estimating optical flow. This project is agnostic to the specific
algorithm employed and tries to be robust to the style of the resultant optical flow field, but it
is important to note that dense optical flow is expected (thus sparse methods like [44] are
excluded). This project uses the OpenCV [43] GPU implementation of the Gunnar-Farnebäck
optical flow algorithm [45], primarily because it is fast. The main deficiency of this algorithm
is that optical flow is only detected on the edges of objects (as observed in Figure 3.5) due
to the aperture problem. This could be mitigated by employing an algorithm which is able
to fill in the missing flow information in the inner regions of homogenous objects, such as
Horn-Schunck [46]. Ultimately this was deemed unnecessary as Horn-Schunck is more sensitive
to noise, and the problem of missing flow is easily solved by the mask refinement stage described
below. Another interesting avenue for future work would be to experiment with the use of
more modern convolutional based approaches such as [47] and [48].

The optical flow field ⌦i is calculated in the OpticalFlowTracker::GPUOpticalFlow()
method. This method begins by allocating GPU memory in form of two cv::cuda::GpuMat
objects, representing frames Fi�1 and Fi . The RGB frames are copied from the host to
GPU, converted to greyscale and fed into the FarnebackOpticalFlow::calc() method.
The resultant flow field is a cv::cuda::GpuMat object, which is copied from GPU to host
to a GPU allocated float * for further processing. The copying back and forth between
host and GPU is the result of no suitable interface for directly accessing elements of a
cv::cuda::GpuMat. Therefore, in order to arrange the ⌦i into a contiguous block of GPU
memory (as required by later stages of the pipeline), it must be copied to and from the host.
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Figure 3.5: A frame Fi and its corresponding optical flow field, ⌦i , with each vector visualised as a
point in HSV colour space. Observed in ⌦i are the motion boundaries between the static background
and the moving foreground, with internal regions of dynamic objects failing to display any motion.
This is the result of the aperture problem.

Camera Pose Estimation

The CPE stage is the least changed from the original ReFusion [13] implementation. The
notable difference between OpticalFlowTracker::TrackCamera(depth, mask) and
ReTracker::TrackCamera(depth, mask) is that the former uses the mask to ignore pixels
in the depth frame, whereas the latter uses geometric residuals to ignore pixels and write to
the mask.

Mask Thresholding

Although Figure 3.1 depicts multiple steps between the warping of the depth frame of Fi�1, and
thresholding the scene flow to get the mask, the GPU-based implementation finds increased
efficiency by consolidating these steps into a single stage (which, while split across by two
CUDA kernels, is a single stage from the perspective of data movement between the host and
GPU).

Equation 3.6 is optimised by the insight identified in Figure 3.5. Due to the aperture problem,
the optical flow field ⌦i is unable to capture the motion of internal regions of dynamic objects.
The system avoids introducing erroneous motion into the projected scene flow field ⇥i (which
could arise if egomotion flow were subtracted from optical flow in these regions) by applying
Equation 3.4 only to pixels ui where |⌦i(ui)| > ⌧ . The result of Equation 3.4 is subsequently
subtracted from the optical flow field vector ⌦i(ui) in place (i.e., no intermediary egomotion
flow field is stored) to produce the projected scene flow field ⇥i in a single step. Parallelism is
achieved by performing this to each pixel on a GPU thread.

Mask Refinement

Algorithm 1 does not parallelise well on a SIMD architecture; there is too much branching to
efficiently utilise vectorisation, leading to many inhibited processors. Therefore, the algorithm
is implemented sequentially on the CPU. Perhaps this algorithm could be parallelised across
multiple (CPU) threads, but it is unclear whether this would yield significant speedup due to
the overhead of thread creation and synchronisation. This is left as an area for future work.

Because the flood-fill algorithm necessitates CPU execution, the preceding morphological erosion
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and dilation are (also) performed on CPU using the OpenCV [43] functions cv::erode() and
cv::dilate().

3.2.3 Performance
Despite the unsuccessful efforts to implement the mask generation pipeline as a monolithic
CUDA kernel, the pipeline is still sufficiently parallelised to achieve real-time performance.
Running in a Docker container on the university GPU cluster (configured in a VM equipped
with an Intel Xeon Silver 4110 - Skylake @ 2.1GHz-3.0GHz and an Nvidia GeForce RTX 2080),
the system achieves ⇠ 10Hz on a 640⇥480 resolution video stream.

3.2.4 Demonstration
An accompanying video for this dissertation is available at: https://youtu.be/zrWnW1QZjHM

https://youtu.be/zrWnW1QZjHM


Chapter 4

Experimental Evaluation

The previous chapter motivated the use of the ReFusion [13] codebase as foundation for
this project with the comparative evaluation it enables. In this chapter, such a comparative
evaluation is performed, with the objective of assessing the system’s ability to reconstruct
dynamic environments from the Bonn [13] and TUM [40] benchmarks.

The rest of this chapter will expand on the approach taken to evaluate the system, and provide
a high level overview of the performance of the novel system, before diving into a more detailed
analysis of the quantitative and qualitative aspects of the system’s performance.

4.1 Experimental Design

The system provides two outputs (and some optional extras depending on the run configuration)
given a reconstruction sequence: a mesh of the scene and a camera trajectory. These two
formats lend themselves to a qualitative and quantitative evaluation respectively. The qualitative
evaluation will appraise the quality of the reconstructed meshes, highlighting sequences in which
this project has outperformed ReFusion in terms of dynamic object removal or background
reconstruction, and sequences which have proven particularly challenging. The quantitative
evaluation will make use of the ground truth trajectories provided by the Bonn and TUM
datasets [13, 40] to calculate the absolute trajectory error (ATE) and relative pose error (RPE)
for each sequence (using the tools provided by the TUM dataset [40]). Results will be reported
for the three reconstruction strategies outlined in Chapter 3, with static reconstruction serving
as a general reconstruction baseline, and ReFusion [13] serving as a baseline for dynamic
reconstruction.

4.1.1 Testing Environment
This evaluation (and much of the developmental testing) was performed on the university GPU
cluster, Hex.

Hardware

Hex has multiple nodes, with varying hardware configurations. The node used for this evaluation
can be seen in Figure 4.1 and has the following specifications:

22
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• CPUs: 2 ⇥ Intel Xeon Silver 4110 - Skylake - 8 cores (hyperthreaded) @ 2.1GHz -
3.0GHz

• GPUs: 6 ⇥ Nvidia RTX 2080, 8GB RAM, 2944 CUDA cores

• RAM: 128GB DDR4 @ 2666MHz

• OS: Ubuntu 20.04.4 LTS

Despite the seeming abundance of computational resource on offer, an individual run of the
system does not make use of all available hardware, existing in a virtual machine that has
access to only one GPU. It is therefore entirely feasible that this system could run on a desktop
machine equipped with a similarly capable GPU.

Software

As Hex is a shared resource among members of the university, it is recommended to use Docker1
for running code. The Dockerfile used to build the image used for this evaluation can be
found in the published project GitHub repository: https://github.com/connorkeevill/
dynamic-3D-reconstruction, and defines the following software stack:

• Ubuntu 16.04

• GCC 5.4.0

• CUDA 9.0

• Eigen 3.3.7

• OpenCV 3.3.1

Figure 4.1: The Hex node used for this evaluation.

1https://www.docker.com

https://github.com/connorkeevill/dynamic-3D-reconstruction
https://github.com/connorkeevill/dynamic-3D-reconstruction
https://www.docker.com
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The Dockerfile is the simplest way to build and run the project, as it installs all necessary
dependencies and builds OpenCV [43] from source with CUDA support.

4.1.2 Experimental Procedure and Data Gathering
The results which are the focus of this evaluation are produced by running the system on the
Bonn [13] and TUM [40] datasets and performing numerical comparisons against ground truth
data. From the Bonn dataset, all sequences are reconstructed except rgbd_bonn_static,
which is omitted because it is extremely long and is too large to fit in the memory of a
TUMVideo(). This could be fixed by streaming the frames from the disk, but as this is
also a static sequence, is was deemed unnecessary. From the TUM dataset, all freigburg3
sequences are used except for the two halfsphere sequences. These are omitted because
they contain camera roll, which the novel system is not equipped to handle, so their inclusion
would distort the results.

TSDF Options
voxel_size 0.01
num_buckets 50000
bucket_size 10
num_blocks 500000
block_size 8
max_sdf_weight 64
truncation_distance 0.1
max_sensor_depth 5
min_sensor_depth 0.1

Table 4.1: Default TSDF configuration op-
tions as used by ReFusion [13].

Tracking Options
max_iterations_per_level_0 6
max_iterations_per_level_1 3
max_iterations_per_level_2 2
downsample_0 4
downsample_1 2
downsample_2 1
min_increment 0.0001
huber_constant 0.02
regularization 0.002
reconstruction_strategy [strategy]
output_mask_video false
output_flow_video false

Table 4.2: Default tracker options as used by
ReFusion [13], with the additional selection of
reconstruction strategy and output options.

Camera Intrinsics
cx 319.5
cy 239.5
fx 525.0
fy 525.0
rows 480
cols 640
depth_factor 5000

Table 4.3: Camera Intrin-
sic parameters for the Mi-
crosoft Kinect [4], as described
by [40].

Logging Profile
verbose false
debug false
writeLogsToFile false
filepath ""

Table 4.4: Logging profile
used for the evaluation.

Generic Output
outputMesh true
outputResults true
outputTimings true
outputReprojectedVideo false

Table 4.5: Generic settings
for ouptut. For evaluation, the
mesh, result (i.e. trajectory)
and timings were all output.
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Running the System

The reconstruction system has been run on the dataset three times - once for each reconstruction
strategy - with the configurations depicted in tables 4.1, 4.2, 4.3, 4.4, and 4.5. The program
is ran from the command line by providing the path to an associated.txt file (as described
by [40]) which instructs the system where to find the RGB and depth images for the sequence.
A Python script bootstraps the execution for every sequence in the dataset.

The same system is used for all three reconstruction strategies, and different strategies are
selected by mounting a different config.toml file into the Docker container. The three
strategies will be referred to with shorthand names: S (static), RF (ReFusion), and N (novel).

Post Processing

Meshes are output as .obj files, and are evaluated without any post-processing. MeshLab2 is
used to view the meshes.

The camera trajectory is output as a text file of camera poses with time stamps (corresponding
to the time stamps of the frame’s pose) in the format specified by the TUM dataset [40].
These are not evaluated directly, but compared against the ground truth trajectories provided
by the dataset to calculate the ATE and RPE for each sequence. The ATE and RPE metrics
are calculated using the tools provided by the TUM dataset [40], which have been slightly
modified to write output to a .csv in addition to the charts they plot. The modified evaluation
scripts are available in the published project GitHub repository, in the ./scripts/ directory.
These data are subsequently analysed in Excel.

4.2 Evaluation

The project presented in this dissertation is a success. Most of the test sequences are
reconstructed with total success; out of 32 sequences, there are 3 total failures, and 7 partial
failures, 5 of which are sequences from the TUM dataset [40] (for a common reason relating
to the depth maps of that benchmark). The term total failure is used here to describe a
reconstruction which is corrupted by a tracking failure, and partial failure is used to describe a
reconstruction which has failed to completely remove a dynamic object from the scene.

The total failure cases are generally sequences in which the camera is moving very quickly,
resulting in blurry frames and large frame-to-frame motion. This hinders the system’s ability
to perform optical flow, estimate camera pose (thus the mask inference pipeline of Figure 3.1
deteriorates) and breaks the assumption of small frame-to-frame motion. Partial failures tend
to occur as a result of a dynamic object initially being static (and thus being registered as
part of the model before motion begins) or dynamic motion happening outside the camera
frustum between two (distinct) visits of the same part of the scene, stopping the system from
detecting the motion. ReFusion [13] does not suffer from this deficiency due to its use of
geometric residuals - it does not rely purely on observed motion to detect dynamic objects.

The static reconstruction strategy (S) used as a baseline in the evaluation is already very
competitive, illustrating Izadi et al.’s [1, 2] claim (see Section 2.1.3) that dense CPE provides
robustness to transient scene motion. Therefore, after providing a summary of performance of
the entire dataset, the evaluation focuses on the performance on sequences which the static

2https://www.meshlab.net

https://www.meshlab.net
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rgbd_bonn_balloon rgbd_bonn_moving_obstucting_box rgbd_bonn_synchronous2rgbd_bonn_crowd

N

RF

Figure 4.2: A direct comparison of the novel system and ReFusion [13] on the rgbd_bonn_balloon,
rgbd_bonn_crowd, rgbd_bonn_moving_obstructing_box, and rgbd_bonn_synchronous2 se-
quences. There are differences between the meshes, but they are very subtle.

system is unable to reconstruct well.

4.2.1 Performance Across Whole Dataset
The performance of the system can be described as consistently good. A quantitative
evaluation of the system is performed by calculating two widely used metrics in SLAM and
3D reconstruction: the absolute trajectory error (ATE) and the relative pose error (RPE).
Measures of central tendency for ATE and RPE are compared between the three reconstruction
strategies, and the two metrics are also plotted graphically to show the error over time (e.g.,
Figure 4.3).

Tables A.1 and A.2 (Appendix A) show the root mean squared error (RMSE) for ATE and RPE
respectively, across all reconstruction sequences and strategies. At face value, ReFusion [13]
outperforms the novel system in terms of ATE and RPE in most sequences; in terms of ATE,
the novel system is outperformed by ReFusion in 27 out of the 32 sequences, and in terms of
RPE, the novel system is outperformed in 22 of the 32 sequences.

These data do not tell the whole story, however. Figure 4.2 and Table 4.6 show a direct
comparison of the novel system and ReFusion on a small subset of the dataset, where,
numerically, ReFusion outperforms the novel system. The qualitative comparison of the meshes
shows that, despite the greater tracking accuracy shown in Table 4.6, the quality of the output
meshes is still on par with those of ReFusion.

Moreover, a closer inspection of the data reveals that the margin by which ReFusion outperforms
the novel system is very small in most sequences. On average, the difference in RMSE when
ReFusion outperforms the novel system is 0.09m in ATE and 0.044m in RPE. Conversely, the
average difference when the novel system outperforms ReFusion is 0.448m (+ 397.8%) in

Sequence N RF S
rgbd_bonn_balloon 0.1796 0.1742 0.1797
rgbd_bonn_crowd 0.1878 0.1256 0.173
rgbd_bonn_moving_obstructing_box 0.4413 0.3596 0.2424
rgbd_bonn_synchronous2 0.0264 0.021 0.0278

Table 4.6: A subset of Table A.1 showing the RMSE for ATE for the meshes in Figure 4.2.
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(a) N ATE (b) RF ATE (c) S ATE

(d) N RPE (e) RF RPE (f) S RPE

Figure 4.3: The ATE and RPE for one of the most challenging (in terms of dynamic motion)
sequences in the Bonn dataset: rgbd_bonn_crowd2. The novel optical flow solution outperforms
both static reconstruction and ReFusion [13] by a considerable margin.

ATE and 0.071m (+ 61.4%) in RPE3. The implication of this observation is that while the
novel system sacrifices some accuracy, it is able to handle a much broader range of sequences
than ReFusion, resulting in a more consistent baseline accuracy.

4.2.2 Performance on Challenging Sequences
There is little discussion to be had around the performance of the novel system on sequences
which the static strategy also reconstructs well. This section will therefore highlight sequences
where the novel system outperforms ReFusion (and the static system), or sequences which
proved particularly challenging for all reconstruction strategies.

Bonn Crowd (2)

Figure 4.3 shows the ATE and RPE for one of the most challenging sequences in the Bonn
dataset: rgbd_bonn_crowd2. The sequence consists of 895 RGB-D frames and contains a
large number of people moving through the scene which the reconstruction system must detect
and remove in order to produce an accurate reconstruction. The charts in Figure 4.3 depict a
much more accurate trajectory estimated by the novel system when compared with both the
static reconstruction baseline and ReFusion [13]. This is reflected in the comparative matrix for
the sequence, shown in Figure 4.4. Notice how the mask from the novel system is much more
accurate than ReFusion. The resultant reprojection therefore has dynamic objects removed,
revealing the background which has already been fused into the model.

This highlights an important point which was discussed in Section 2.2.2. The N column in

3The difference here indicates the amount by which one system has outperformed the other: higher
difference =) better comparative performance.
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Input Frame N RF S

Mask

Reprojection

Reconstruction

Figure 4.4: A comparative matrix of the rgbd_bonn_crowd2 sequence, showing snapshots of the
reconstruction at time=12s. To the left of the bar: the depth and RGB frames. To the right of the bar:
the novel, ReFusion and static reconstruction strategies (left to right) and their mask, reprojection and
output meshes (top to bottom). The reprojection (middle row) is a render of the mesh (at time=12s)
from the estimated camera pose.

Figure 4.4 shows that, even with the excluded dynamic sections of the frame, the resultant
void has not had an impact on the reconstruction. The system’s ability to accurately track
camera pose (shown in Figure 4.3) has enabled other frames in the sequence which contain
the necessary background information to be fused into the model.

Bonn Balloon Tracking

The three reconstruction methods also struggle with the Bonn balloon tracking sequences:
rgbd_bonn_balloon_tracking and rgbd_bonn_balloon_tracking2. These sequences
show a dynamic subject throwing a balloon into the air which is left to fall onto the floor;
the camera tracks the balloon. The difficulty in these sequences arises from the fast motion
observed when the balloon is thrown. As depicted in Figure 4.5, the motion blur this causes
results in a large spike (highlighted) in the RPE for all three reconstruction strategies. The
frame shown in the figure is from the peak of the spike, and is taken just after the balloon
is thrown. While none of the three reconstruction strategies have been able to successfully
capture the scene’s mesh, notice that N has the most accurate mesh (the floor is planar and
ghosted cart is close to initial position) for rgbd_bonn_balloon_tracking, and RF has the
most accurate mesh for rgbd_bonn_balloon_tracking2.

Even in the absence of the fast motion induced by tracking the balloon, the RPE plots are quite
noisy for this sequence, displaying oscillations in the error. This is likely due to the ambiguous
state of the subject: initially they are standing still, before transitioning to a dynamic state
where the balloon is thrown. For N, the initial static state means that the subject is not
segmented out of the frame and consequently is fused into the model for early tracking, before
being removed once the dynamic state is detected.
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rgbd_bonn_balloon_tracking2
t=6.4s

rgbd_bonn_balloon_tracking
t=10.2s

N

RF

S

Figure 4.5: The rgbd_bonn_balloon_tracking (left) and rgbd_bonn_balloon_tracking2
(right) sequences, reconstructed by all three strategies. The RGB frames shown at the top are
from time=10.2s and time=6.4s respectively, and are frames from high motion parts of the sequence,
corresponding to the spikes (highlighted in red) seen in their respective RPE charts.

Bonn Kidnapping Box

This weakness of the novel system (in which dynamic objects can be fused into the model
before being detected as dynamic) is also seen in the rgbd_bonn_kidnapping_box sequence,
where dynamic motion happens outside the camera’s field of view between two encounters of
the same region. This sequence consists of an initial sweep of the scene where a box is laid on
the floor, before the camera moves away while the box is moved, and then returns to the same
location. This type of unobserved dynamic motion is not handled well by the novel system,
which relies on observed dynamic motion to create the mask. ReFusion’s geometry-aware
approach performs better in these sequences as it is able to detect the change in scene geometry
between the two encounters of the box’s location. Figure 4.6 exemplifies this difference in
behaviour, showing the meshes produced by N and RF.

Similar behaviour is observed in the rgbd_bonn_person_tracking sequences, where an
initially static subject is registered as part of the model before beginning to move (see
Figure 4.7).
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(a) rgbd_bonn_kidnapping_box reconstructed by N
(b) rgbd_bonn_kidnapping_box reconstructed by
RF

Figure 4.6: Reconstructions of the rgbd_bonn_kidnapping_box sequence by N and RF. Notice
the key difference that the mesh reconstructed by RF does not include the box on the table.

Figure 4.7: The rgbd_bonn_person_tracking sequence, reconstructed by N. The subject in this
sequence is initially static, before becoming dynamic (walking in an arc through the room), resulting
in their registration to the model.

Balloon (2)

The quantitative results fail to fully describe the quality of the generated mesh. A more accurate
trajectory does generally lead to a better mesh, but the ATE and RPE do not encompass any
information about the removal of dynamic objects from the mesh. rgbd_bonn_balloon2 is a
sequence which highlights this point. The sequence contains 469 RGB-D frames and shows a
subject bouncing a balloon on their hand.

In terms of RPE and ATE, ReFusion performs best, followed by the baseline static system,
and then the novel system (see Table 4.7 and Figure 4.8). Despite having the least accurate

Metric N RF S
ATE 0.2811 0.189 0.2562
RPE 0.3081 0.2891 0.3006

Table 4.7: RPE and ATE RMSE for the rgbd_bonn_balloon2 sequence, reconstructed by N, RF
and S.
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(a) rgbd_bonn_balloon2 recon-
structed by N

(b) rgbd_bonn_balloon2 recon-
structed by RF

(c) rgbd_bonn_balloon2 recon-
structed by S

(d) rgbd_bonn_balloon2 ATE
from N

(e) rgbd_bonn_balloon2 ATE
from RF

(f) rgbd_bonn_balloon2 ATE
from S

Figure 4.8: Reconstructions and ATE plots of the rgbd_bonn_kidnapping sequence by N, RF and
S. Notice the absence of the balloon (the yellow blur visible in RF and, faintly, S) in in the mesh of
N, despite the less accurate trajectory.

trajectory, the novel system most successfully removes the dynamic objects from the scene,
as shown in Figure 4.8. This difference in mesh accuracy can be attributed to the fact that
ReFusion does not use observed motion to directly detect dynamic objects (instead looking to
find the geometric and photometric residuals caused by dynamic objects). This sequence sees
the balloon move quickly through a space which the camera does not return to; ReFusion fails
to detect the change in geometry by not revisiting that part of the balloon’s path. The novel
system, however, is able to directly detect that the balloon is moving and segment it from the
scene.

This does not invalidate the use of RPE and ATE as evaluation metrics; indeed, the novel
system has the least accurate trajectory for this sequence. However, it is worth noting that
these metrics do not fully capture the quality of the mesh. In instances where the differences
in trajectory are relatively small (in this case, approximately 9cm in ATE and 2cm in RPE),
the quality of the mesh can be more significant than these metrics suggest.

4.3 Limitations

Despite its success, the novel system developed for this dissertation is far from perfect. This
section will identify some of the weaknesses of the system.

Section 4.2.2 has already touched on the system’s inability to detect dynamics which have
happened outside the camera frustum. This is an inherent problem of the approach (relying
on observed motion to detect dynamics), with no simple solution.

Another weakness of the project is the absence of any technique to recover from tracking
failures (i.e., loop-closures). This is a result of the project’s use of ReFusion [13], which
does not perform loop-closures, and a general focus of the project on the dynamics detection
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problem (rather than the SLAM problem). The visual front end developed for this dissertation
is not inherently tied to the ReFusion backend, and the approach could be adapted for an
alternative SLAM system which does perform loop-closures. But it is important to consider the
impact that loop closures would have on the mask inference pipeline (Figure 3.1). Egomotion
compensation uses estimated camera pose to create the projected scene flow field, and a
loop-closure would propagate a pose correction through the loop, which could necessitate a
re-computation of the masks.

Motion blur presents another problem for the system. Hindering the system’s ability to calculate
optical flow and estimate camera pose, sustained motion blur can lead to tracking failure
(see Figure 4.5). The solution to this would involve a more robust optical flow algorithm and
camera pose estimation approach, both of which present large challenges as research problems
in their own right.

Further, there is the system’s performance on the TUM RGB-D dataset [40], which is
consistently worse than on the Bonn dataset (Figure 4.9 shows some samples). This can
be attributed to the sequences containing invalid depth measurements, which the developed
system has not been designed to handle. This is not a complex issue to solve; one could employ
the work of Berdinkov and Vatolin [19] to detect and interpolate invalid depth measurements
as a preprocessing step.

(a) fr3/sitting_rpy reconstructed by N (b) fr3/walking_xyz reconstructed by N

Figure 4.9: Reconstructions from the TUM benchmark, demonstrating the poor performance due to
the invalid depth measurements present in that dataset.
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Conclusion

This dissertation has presented a novel approach to the problem of reconstructing dynamic
environments, using what has been termed egomotion compensated optical flow to detect
and segment dynamic objects. The mathematical foundation for this approach was intro-
duced, along with a detailed description of the system’s implementation. The supporting
code for this dissertation is published on GitHub: https://github.com/connorkeevill/
dynamic-3D-reconstruction. The video demonstration of the system is available on
YouTube: https://youtu.be/zrWnW1QZjHM

The paper performs a detailed evaluation of the system, comparing it to the state-of-the-
art [13] in dynamic scene reconstruction, finding that the novel system performs as well as,
or better than, the state-of-the-art in most cases. The evaluation examines the performance
of the system on the Bonn [13] and TUM [40] benchmarks, and evaluates the quantitative
performance of the system by computing the absolute trajectory error (ATE) and relative
pose error (RPE) of the estimated trajectories, and correlates these numerical results with the
visual quality of the reconstructed meshes. Many of the system’s strengths and weaknesses
are identified and discussed. The proposed system is shown to be capable of reconstructing
dynamic environments containing multiple moving objects in real time, satisfying the initial
goals of the dissertation.

5.1 Future Work

The work presented leaves many avenues for future research, some of which have already been
identified in the paper. One such avenue is that of further GPU acceleration. Section 3.2
describes the failed efforts to implement Figure 2.1’s pipeline as a monolithic CUDA kernel.
A compelling direction for future work could see this pipeline more tightly integrated with
the GPU, perhaps by reimplementing some of the OpenCV [43] functions for the GPU to
eliminate the interface incompatibilities which are the source of the performance bottleneck, or
by implementing the flood-fill of Algorithm 1 in CUDA. Such an implementation would reduce
the movement of data between the CPU and GPU, and would likely result in a significant
performance improvement.

Another avenue to explore in further research is an investigation into different optical flow
algorithms. The optical flow algorithm used in this dissertation is the Farnebäck algorithm [45],
motivated mainly by its speed. However, as more modern optical flow techniques based on

33

https://github.com/connorkeevill/dynamic-3D-reconstruction
https://github.com/connorkeevill/dynamic-3D-reconstruction
https://youtu.be/zrWnW1QZjHM


CHAPTER 5. CONCLUSION 34

deep learning [47, 48] are beginning to outperform traditional approaches in both performance
and speed, it would be interesting to see how the proposed system compares when using these
more modern algorithms.

The main area of difficulty encountered by the proposed system was in the sequences from the
TUM benchmark [40], due to the invalid depth measurements in many of the sequences. Future
work could see this deficiency remedied through the implementation of a depth map inpainting
algorithm, like Berdinkov and Vatolin’s work in [19], or Trombley et al.’s Dynamic-GAN [39],
or perhaps the use of a bilateral filter [16] to smooth the depth map.

Finally, the proposed system could be extended to perform trajectory refinement through the
implementation of loop-closures. This would require significant rearchitecting of the core
pipeline, as the current implementation does not retain any information about the camera
poses, so cannot perform loop-closure detection. Moreover, changes to the estimated trajectory
would alter the egomotion compensation used in generating the mask; the effects of loop
closure would propagate through the pipeline, and would need to be accounted for. However,
it is a promising direction for future work as would allow the system to recover from tracking
failures and sensor drift.

5.2 Personal Reflection

For a personal reflection, I will switch to first person. I have found this dissertation to be an
extremely challenging but rewarding introduction to the world of research. I have never aspired
to perform research. I consider myself a poor writer, and expressing my thoughts in written
English is not something that comes naturally to me. The prospect of being let loose on any
problem with no clear solution, and no clear path forward, was daunting and overwhelming.
And yet, as I am proofreading my final draft, I have an immense feeling of pride of what I
have accomplished. This work represents months of hard work and frustration and I feel that
it is a fair reflection of what I am a capable of as a Computer Scientist.

I have learnt a lot from this project, both about 3D reconstruction and the world of research
as a whole. For instance: I have learnt how to read an academic paper; before this project I
had never read one in its entirety. I now have an appreciation for the incredible amount of
effort and sacrifice that every published paper is emblematic of, and a feeling of reverence
towards the academic staff at the University of Bath’s department of Computer Science who
are able to produce research at a remarkable cadence.

In my opinion, the project has been a success. The 3D reconstruction system I have developed
performs much better than I had envisioned at the start of the project. My work is able
to consistently perform as well as, and in some cases outperform, the state-of-the-art that
is ReFusion [13]. I am very grateful to have been afforded the opportunity to conduct this
research.

5.3 Word Count

This dissertation has 10773 words (excluding these), as counted by Overleaf 1 and shown on
the next page.

1urlhttps://www.overleaf.com/
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Figure 5.1: Word count as counted by Overleaf
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Appendix A

Raw Results

This section presents full tables of results from the quantitative evaluation.

40
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Sequence N RF S
rgbd_bonn_balloon 0.1796 0.1742 0.1797
rgbd_bonn_balloon_tracking 0.2869 0.4665 0.4483
rgbd_bonn_balloon_tracking2 0.4472 0.2697 0.4443
rgbd_bonn_balloon2 0.2811 0.189 0.2562
rgbd_bonn_crowd 0.1878 0.1256 0.173
rgbd_bonn_crowd2 0.1749 1.4281 1.3671
rgbd_bonn_crowd3 0.1476 0.133 0.1358
rgbd_bonn_kidnapping_box 0.1744 0.1515 0.1908
rgbd_bonn_kidnapping_box2 0.1676 0.1589 0.1658
rgbd_bonn_moving_nonobstructing_box 0.073 0.0706 0.075
rgbd_bonn_moving_nonobstructing_box2 0.196 0.1791 0.1968
rgbd_bonn_moving_obstructing_box 0.4413 0.3596 0.2424
rgbd_bonn_moving_obstructing_box2 0.574 0.8563 0.184
rgbd_bonn_person_tracking 0.3288 0.2847 0.3527
rgbd_bonn_person_tracking2 0.4698 0.4673 0.4796
rgbd_bonn_placing_nonobstructing_box 0.134 0.105 0.1071
rgbd_bonn_placing_nonobstructing_box2 0.1455 0.1393 0.1456
rgbd_bonn_placing_nonobstructing_box3 0.1839 0.1771 0.2008
rgbd_bonn_placing_obstructing_box 1.1256 0.7599 0.7873
rgbd_bonn_removing_nonobstructing_box 0.0428 0.04 0.0436
rgbd_bonn_removing_nonobstructing_box2 0.1184 0.1088 0.1169
rgbd_bonn_removing_obstructing_box 0.2051 0.1931 0.2347
rgbd_bonn_static_close_far 1.4411 1.5472 3678.6443
rgbd_bonn_synchronous 0.2262 0.6466 0.4655
rgbd_bonn_synchronous2 0.0264 0.021 0.0278
rgbd_dataset_freiburg2_desk_with_person 0.1381 0.0506 0.0983
rgbd_dataset_freiburg3_sitting_rpy 1.0594 0.1453 0.0873
rgbd_dataset_freiburg3_sitting_static 0.0111 0.0105 0.0112
rgbd_dataset_freiburg3_sitting_xyz 0.0483 0.0386 0.0423
rgbd_dataset_freiburg3_walking_rpy 0.8439 0.4197 0.5219
rgbd_dataset_freiburg3_walking_static 0.0273 0.0162 0.0289
rgbd_dataset_freiburg3_walking_xyz 0.1239 0.0875 0.4676

Table A.1: The raw results of the root mean squared error (RMSE) for ATE across the different
reconstruction strategies. The minimum (i.e., best) RMSE for each reconstruciton sequence is
highlighted in bold.
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Sequence N RF S
rgbd_bonn_balloon 0.2895 0.2907 0.2901
rgbd_bonn_balloon_tracking 0.5277 0.5363 0.5595
rgbd_bonn_balloon_tracking2 0.6534 0.6145 0.6227
rgbd_bonn_balloon2 0.3081 0.2891 0.3006
rgbd_bonn_crowd 0.1419 0.124 0.1503
rgbd_bonn_crowd2 0.1718 0.4784 0.4024
rgbd_bonn_crowd3 0.1328 0.1203 0.1265
rgbd_bonn_kidnapping_box 0.3248 0.3218 0.3258
rgbd_bonn_kidnapping_box2 0.3162 0.3163 0.3164
rgbd_bonn_moving_nonobstructing_box 0.2609 0.2618 0.2607
rgbd_bonn_moving_nonobstructing_box2 0.3259 0.3254 0.3262
rgbd_bonn_moving_obstructing_box 0.344 0.3038 0.2675
rgbd_bonn_moving_obstructing_box2 0.2836 0.4086 0.1891
rgbd_bonn_person_tracking 0.4368 0.4247 0.453
rgbd_bonn_person_tracking2 0.3697 0.3676 0.3711
rgbd_bonn_placing_nonobstructing_box 0.1562 0.1503 0.1533
rgbd_bonn_placing_nonobstructing_box2 0.1864 0.1837 0.1861
rgbd_bonn_placing_nonobstructing_box3 0.2782 0.2754 0.2771
rgbd_bonn_placing_obstructing_box 0.3366 0.2678 0.2339
rgbd_bonn_removing_nonobstructing_box 0.1703 0.1704 0.1707
rgbd_bonn_removing_nonobstructing_box2 0.2324 0.2313 0.232
rgbd_bonn_removing_obstructing_box 0.1585 0.1589 0.1689
rgbd_bonn_static_close_far 0.5223 0.596 1479.4257
rgbd_bonn_synchronous 0.1543 0.3493 0.2958
rgbd_bonn_synchronous2 0.0434 0.0418 0.0438
rgbd_dataset_freiburg2_desk_with_person 0.0341 0.0193 0.0213
rgbd_dataset_freiburg3_sitting_rpy 0.3807 0.147 0.0479
rgbd_dataset_freiburg3_sitting_static 0.0084 0.008 0.0083
rgbd_dataset_freiburg3_sitting_xyz 0.0217 0.0178 0.0191
rgbd_dataset_freiburg3_walking_rpy 0.7693 0.3129 0.3389
rgbd_dataset_freiburg3_walking_static 0.0207 0.014 0.0274
rgbd_dataset_freiburg3_walking_xyz 0.1017 0.0833 0.2619

Table A.2: The raw results of the root mean square error (RMSE) values for RPE metric across
the different reconstruction strategies. The minimum (i.e., best) RMSE for each reconstruction is
highlighted in bold.
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